RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2002 Volume 238, Pages 81–85 (Mi tm345)

This article is cited in 6 papers

Locally Quasi-Homogeneous Free Divisors Are Koszul Free

F. Calderón-Moreno, L. Narváez-Macarro

University of Seville

Abstract: Let $X$ be a complex analytic manifold and $D\subset X$ be a free divisor. If $D$ is locally quasi-homogeneous, then the logarithmic de Rham complex associated to $D$ is quasi-isomorphic to $\mathbf R j_\ast (\mathbb C_{X\setminus D})$, which is a perverse sheaf. On the other hand, the logarithmic de Rham complex associated to a Koszul-free divisor is perverse. In this paper, we prove that every locally quasi-homogeneous free divisor is Koszul free.

UDC: 512.7+517.55

Received in November 2000

Language: English


 English version:
Proceedings of the Steklov Institute of Mathematics, 2002, 238, 72–76

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024