RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2013 Volume 280, Pages 188–197 (Mi tm3458)

This article is cited in 4 papers

Greedy bases in $L^p$ spaces

K. Kazariana, V. N. Temlyakovbc

a Department of Mathematics, Universidad Autónoma de Madrid, Madrid, Spain
b Mathematics Department, University of South Carolina, Columbia, SC, USA
c Steklov Mathematical Institute, Moscow, Russia

Abstract: We consider a weighted $L^p$ space $L^p(w)$ with a weight function $w$. It is known that the Haar system $\mathcal H_p$ normalized in $L^p$ is a greedy basis of $L^p$, $1<p<\infty$. We study a question of when the Haar system $\mathcal H_p^w$ normalized in $L^p(w)$ is a greedy basis of $L^p(w)$, $1<p<\infty$. We prove that if $w$ is such that $\mathcal H_p^w$ is a Schauder basis of $L^p(w)$, then $\mathcal H_p^w$ is also a greedy basis of $L^p(w)$, $1<p<\infty$. Moreover, we prove that a subsystem of the Haar system obtained by discarding finitely many elements from it is a Schauder basis in a weighted norm space $L^p(w)$; then it is a greedy basis.

UDC: 517.51

Received in January 2012

Language: English

DOI: 10.1134/S0371968513010123


 English version:
Proceedings of the Steklov Institute of Mathematics, 2013, 280, 181–190

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025