Abstract:
We study a random walk in random environment on $\mathbb Z_+$. The random environment is not homogeneous in law, but is a mixture of two kinds of site, one in asymptotically vanishing proportion. The two kinds of site are (i) points endowed with probabilities drawn from a symmetric distribution with heavy tails at 0 and 1, and (ii) “fast points” with a fixed systematic drift. Without these fast points, the model is related to the diffusion in heavy-tailed (“stable”) random potential studied by Schumacher and Singh; the fast points perturb that model. The two components compete to determine the behaviour of the random walk; we identify phase transitions in terms of the model parameters. We give conditions for recurrence and transience and prove almost sure bounds for the trajectories of the walk.