RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2013 Volume 282, Pages 87–97 (Mi tm3494)

This article is cited in 10 papers

Multitype subcritical branching processes in a random environment

E. E. Dyakonova

Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow, Russia

Abstract: We investigate a multitype Galton–Watson process in a random environment generated by a sequence of independent identically distributed random variables. Assuming that the mean of the increment $X$ of the associated random walk constructed by the logarithms of the Perron roots of the reproduction mean matrices is negative and the random variable $Xe^X$ has zero mean, we find the asymptotics of the survival probability at time $n$ as $n\to\infty$.

UDC: 519.218.27

Received in December 2012

DOI: 10.1134/S0371968513030084


 English version:
Proceedings of the Steklov Institute of Mathematics, 2013, 282, 80–89

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025