RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2013 Volume 282, Pages 315–335 (Mi tm3498)

Random $A$-permutations and Brownian motion

A. L. Yakymiv

Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow, Russia

Abstract: We consider a random permutation $\tau _n$ uniformly distributed over the set of all degree $n$ permutations whose cycle lengths belong to a fixed set $A$ (the so-called $A$-permutations). Let $X_n(t)$ be the number of cycles of the random permutation $\tau _n$ whose lengths are not greater than $n^t$, $t\in[0,1]$, and $l(t)=\sum_{i\leq t,i\in A}1/i$, $t>0$. In this paper, we show that the finite-dimensional distributions of the random process $\{Y_n(t)=(X_n(t)-l(n^t))/\sqrt{\varrho\ln n}$, $t\in[0,1]\}$ converge weakly as $n\to\infty$ to the finite-dimensional distributions of the standard Brownian motion $\{W(t),t\in[0,1]\}$ in a certain class of sets $A$ of positive asymptotic density $\varrho$.

UDC: 519.212.2+519.218.1

Received in March 2012

DOI: 10.1134/S0371968513030217


 English version:
Proceedings of the Steklov Institute of Mathematics, 2013, 282, 298–318

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025