RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2013 Volume 283, Pages 257–266 (Mi tm3501)

Differentiability points of functions in weighted Sobolev spaces

A. I. Tyulenev

Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region, Russia

Abstract: We consider weighted Sobolev spaces $W_p^l$, $l\in\mathbb N$, with weighted $L_p$-norm of higher derivatives on an $n$-dimensional cube-type domain. The weight $\gamma$ depends on the distance to an $(n-d)$-dimensional face $E$ of the cube. We establish the property of uniform $L_p$-differentiability of functions in these spaces on the face $E$ of an appropriate dimension. This property consists in the possibility of $L_p$-approximation of the values of a function near $E$ by a polynomial of degree $l-1$.

UDC: 517.518.23

Received in February 2013

DOI: 10.1134/S0371968513040171


 English version:
Proceedings of the Steklov Institute of Mathematics, 2013, 283, 250–259

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025