RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2013 Volume 283, Pages 188–203 (Mi tm3515)

This article is cited in 8 papers

Uniform stability of the inverse Sturm–Liouville problem with respect to the spectral function in the scale of Sobolev spaces

A. M. Savchuk, A. A. Shkalikov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia

Abstract: We consider the inverse problem of recovering the potential for the Sturm–Liouville operator $Ly=-y''+q(x)y$ on the interval $[0,\pi]$ from the spectrum of the Dirichlet problem and norming constants (from the spectral function). For a fixed $\theta\geq0$, with this problem we associate a map $F\colon W^\theta_2\to l^\theta_\mathrm D$, $F(\sigma)=\{s_k\}_1^\infty$, where $W^\theta_2= W^\theta_2[0,\pi]$ is the Sobolev space, $\sigma=\int q$ is a primitive of the potential $q\in W^{\theta-1}_2$, and $l^\theta _\mathrm D$ is a specially constructed finite-dimensional extension of the weighted space $l^\theta_2$; this extension contains the regularized spectral data $\mathbf s=\{s_k\}_1^\infty$ for the problem of recovering the potential from the spectral function. The main result consists in proving both lower and upper uniform estimates for the norm of the difference $\|\sigma-\sigma_1\|_\theta$ in terms of the $l^\theta_\mathrm D$ norm of the difference of the regularized spectral data $\|\mathbf s-\mathbf s_1\|_\theta$. The result is new even for the classical case $q\in L_2$, which corresponds to the case of $\theta=1$.

UDC: 517.9

Received in March 2013

DOI: 10.1134/S0371968513040134


 English version:
Proceedings of the Steklov Institute of Mathematics, 2013, 283, 181–196

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025