RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2014 Volume 284, Pages 288–303 (Mi tm3530)

This article is cited in 23 papers

Description of traces of functions in the Sobolev space with a Muckenhoupt weight

A. I. Tyulenev

Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia

Abstract: We characterize the trace of the Sobolev space $W_p^l(\mathbb R^n,\gamma)$ with $1<p<\infty$ and weight $\gamma\in A_p^\mathrm{loc}(\mathbb R^n)$ on a $d$-dimensional plane for $1\le d<n$. It turns out that for a function $\varphi$ to be the trace of a function $f\in W_p^l(\mathbb R^n,\gamma)$, it is necessary and sufficient that $\varphi$ belongs to a new Besov space of variable smoothness, $\overline B{}_p^l(\mathbb R^d,\{\gamma_{k,m}\})$, constructed in this paper. The space $\overline B{}_p^l(\mathbb R^d,\{\gamma_{k,m}\})$ is compared with some earlier known Besov spaces of variable smoothness.

UDC: 517.518.23

Received in July 2013

DOI: 10.1134/S0371968514010208


 English version:
Proceedings of the Steklov Institute of Mathematics, 2014, 284, 280–295

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025