Abstract:
A sharp correction theorem is established for Sobolev spaces in which the norm (quasinorm) of generalized derivatives is calculated in an arbitrary symmetric space. The exact relation between the norm of a corrected function in the Lipschitz space and the measure of the set on which the corrected and original functions are different makes it possible to characterize the Sobolev spaces constructed on the basis of the Marcinkiewicz space in terms of correctability. This opens a way to constructing Sobolev–Marcinkiewicz spaces for functions with an arbitrary domain of definition.