RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2014 Volume 285, Pages 89–106 (Mi tm3538)

This article is cited in 5 papers

Autowave processes in continual chains of unidirectionally coupled oscillators

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University, Yaroslavl, Russia
b M. V. Lomonosov Moscow State University, Moscow, Russia

Abstract: We introduce a mathematical model of a continual circular chain of unidirectionally coupled oscillators. It is a nonlinear hyperbolic boundary value problem obtained from a circular chain of unidirectionally coupled ordinary differential equations in the limit as the number of equations indefinitely increases. We study the attractors of this boundary value problem. Combining analytic and numerical methods, we establish that one of the following two alternatives takes place in this problem: either the buffer phenomenon (unbounded accumulation of stable periodic motions) or chaotic attractors of arbitrarily high Lyapunov dimensions.

UDC: 517.926

Received in February 2014

DOI: 10.1134/S0371968514020071


 English version:
Proceedings of the Steklov Institute of Mathematics, 2014, 285, 81–98

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024