RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2014 Volume 285, Pages 166–206 (Mi tm3546)

This article is cited in 13 papers

$p$-Adic wavelets and their applications

S. V. Kozyreva, A. Yu. Khrennikovb, V. M. Shelkovichcd

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b International Center for Mathematical Modeling in Physics, Engineering and Cognitive Sciences, Linnaeus University, Växjö, Sweden
c St. Petersburg State University, Faculty of Physics, St. Petersburg, Russia
d St. Petersburg State University of Architecture and Civil Engineering, St. Petersburg, Russia

Abstract: The theory of $p$-adic wavelets is presented. One-dimensional and multidimensional wavelet bases and their relation to the spectral theory of pseudodifferential operators are discussed. For the first time, bases of compactly supported eigenvectors for $p$-adic pseudodifferential operators were considered by V. S. Vladimirov. In contrast to real wavelets, $p$-adic wavelets are related to the group representation theory; namely, the frames of $p$-adic wavelets are the orbits of $p$-adic transformation groups (systems of coherent states). A $p$-adic multiresolution analysis is considered and is shown to be a particular case of the construction of a $p$-adic wavelet frame as an orbit of the action of the affine group.

UDC: 517.5+517.984.5

Received in October 2013

DOI: 10.1134/S0371968514020125


 English version:
Proceedings of the Steklov Institute of Mathematics, 2014, 285, 157–196

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024