RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2014 Volume 286, Pages 22–39 (Mi tm3560)

This article is cited in 2 papers

On Cohen braids

V. G. Bardakovab, V. V. Vershininac, J. Wud

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Département des Sciences Mathématiques, Université Montpellier 2, Montpellier cedex 5, France
d Department of Mathematics, National University of Singapore, Singapore

Abstract: For a general connected surface $M$ and an arbitrary braid $\alpha$ from the surface braid group $B_{n-1}(M)$, we study the system of equations $d_1\beta=\dots=d_n\beta=\alpha$, where the operation $d_i$ is the removal of the $i$th strand. We prove that for $M\neq S^2$ and $M\neq\mathbb R\mathrm P^2$, this system of equations has a solution $\beta\in B_n(M)$ if and only if $d_1\alpha=\dots=d_{n-1}\alpha$. We call the set of braids satisfying the last system of equations Cohen braids. We study Cohen braids and prove that they form a subgroup. We also construct a set of generators for the group of Cohen braids. In the cases of the sphere and the projective plane we give some examples for a small number of strands.

UDC: 512.54+515.1

Received in November 2013

DOI: 10.1134/S0371968514030029


 English version:
Proceedings of the Steklov Institute of Mathematics, 2014, 286, 16–32

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024