RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2014 Volume 286, Pages 129–143 (Mi tm3569)

This article is cited in 2 papers

Subword complexes and edge subdivisions

M. A. Gorskyab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Université Paris Diderot — Paris 7, Institut de Mathématiques de Jussieu — Paris Rive Gauche, UMR 7586 du CNRS, Paris, France

Abstract: For a finite Coxeter group, a subword complex is a simplicial complex associated with a pair $(\mathbf Q,\pi)$, where $\mathbf Q$ is a word in the alphabet of simple reflections and $\pi$ is a group element. We discuss the transformations of such a complex that are induced by braid moves of the word $\mathbf Q$. We show that under certain conditions, such a transformation is a composition of edge subdivisions and inverse edge subdivisions. In this case, we describe how the $H$- and $\gamma$-polynomials change under the transformation. This case includes all braid moves for groups with simply laced Coxeter diagrams.

UDC: 514.172.45

Received in December 2013

DOI: 10.1134/S0371968514030078


 English version:
Proceedings of the Steklov Institute of Mathematics, 2014, 286, 114–127

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025