RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2014 Volume 287, Pages 242–266 (Mi tm3582)

This article is cited in 1 paper

Critical dimension in the semiparametric Bernstein–von Mises theorem

Maxim E. Panovabc, Vladimir G. Spokoinyade

a Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
b Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
c Datadvance Company, Moscow, Russia
d Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
e Humboldt-Universität zu Berlin, Berlin, Germany

Abstract: The classical parametric and semiparametric Bernstein–von Mises (BvM) results are reconsidered in a nonclassical setup allowing finite samples and model misspecification. In the parametric case and in the case of a finite-dimensional nuisance parameter, we establish an upper bound on the error of Gaussian approximation of the posterior distribution of the target parameter; the bound depends explicitly on the dimension of the full and target parameters and on the sample size. This helps to identify the so-called critical dimension $p_n$ of the full parameter for which the BvM result is applicable. In the important special i.i.d. case, we show that the condition "$p_n^3/n$ is small" is sufficient for the BvM result to be valid under general assumptions on the model. We also provide an example of a model with the phase transition effect: the statement of the BvM theorem fails when the dimension $p_n$ approaches $n^{1/3}$.

UDC: 519.22

Received in June 2014

DOI: 10.1134/S0371968514040141


 English version:
Proceedings of the Steklov Institute of Mathematics, 2014, 287:1, 232–255

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024