RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2002 Volume 239, Pages 98–105 (Mi tm361)

This article is cited in 8 papers

Sails and Hilbert Bases

O. N. German

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: A sail is the boundary of a Klein polyhedron. A relation between certain properties of sails is determined. In particular, a criterion is presented for the Hilbert basis of the semigroup of integer points of a cone in $\mathbb R^3$ and $\mathbb R^4$ to be contained in the sail.

UDC: 511.9

Received in March 2002


 English version:
Proceedings of the Steklov Institute of Mathematics, 2002, 239, 88–95

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024