RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2002 Volume 239, Pages 179–194 (Mi tm367)

This article is cited in 1 paper

On Some Lattices Connected with a Finite Group

A. V. Zareluaab

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow State Technological University "Stankin"

Abstract: Let $\mathbb C[G]$ be the group ring of a finite group $G$, $\pi _r$ be a minimal central idempotent of this group ring, and $W_r=\mathbb C[G]\pi _r$ be the corresponding minimal central two-sided ideal. The ring $\mathbb C[G]$ contains the group ring $\mathbb Z[G]$, whereby the ideal $W_r$ contains a subring $A_r=\mathbb Z[G]\pi _r$. This article concerns the geometrical properties of location of the subring $A_r$ in the ideal $W_r$. The following facts are proved: (1) generally, the subgroup $A_r$ is not discrete in $W_r$; (2) if the associated irreducible character $\chi _r$ has integer values, then $A_r$ is a lattice in $W_r$; (3) if the irreducible character $\chi _r$ is real, the converse is true as well; (4) for a symmetrization $W_r^{\bullet }$ with respect to an action of a certain Galois group, the subgroup $\mathbb Z[G]\pi _r^{\bullet }$ is a lattice in $W_r^{\bullet}$.

UDC: 514.174.6

Received in April 2002


 English version:
Proceedings of the Steklov Institute of Mathematics, 2002, 239, 168–183

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025