RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2016 Volume 292, Pages 268–279 (Mi tm3687)

This article is cited in 7 papers

Properly discontinuous group actions on affine homogeneous spaces

George Tomanov

Institut Camille Jordan, Université Claude Bernard – Lyon 1, Bâtiment de Mathématiques, 43 Bld. du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

Abstract: Let $G$ be a real algebraic group, $H \leq G$ an algebraic subgroup containing a maximal reductive subgroup of $G$, and $\Gamma $ a subgroup of $G$ acting on $G/H$ by left translations. We conjecture that $\Gamma $ is virtually solvable provided its action on $G/H$ is properly discontinuous and $\Gamma \backslash G/H$ is compact, and we confirm this conjecture when $G$ does not contain simple algebraic subgroups of rank ${\geq }\,2$. If the action of $\Gamma $ on $G/H$ (which is isomorphic to an affine linear space $\mathbb A^n$) is linear, our conjecture coincides with the Auslander conjecture. We prove the Auslander conjecture for $n\leq 5$.

UDC: 512.74+515.122.4

Received: April 26, 2015

Language: English

DOI: 10.1134/S0371968516010179


 English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 292, 260–271

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025