RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2016 Volume 292, Pages 224–254 (Mi tm3689)

This article is cited in 5 papers

On the congruence kernel for simple algebraic groups

Gopal Prasada, Andrei S. Rapinchukb

a Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA
b Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USA

Abstract: This paper contains several results about the structure of the congruence kernel $C^{(S)}(G)$ of an absolutely almost simple simply connected algebraic group $G$ over a global field $K$ with respect to a set of places $S$ of $K$. In particular, we show that $C^{(S)}(G)$ is always trivial if $S$ contains a generalized arithmetic progression. We also give a criterion for the centrality of $C^{(S)}(G)$ in the general situation in terms of the existence of commuting lifts of the groups $G(K_v)$ for $v\notin S$ in the $S$-arithmetic completion $\widehat {G}^{(S)}$. This result enables one to give simple proofs of the centrality in a number of cases. Finally, we show that if $K$ is a number field and $G$ is $K$-isotropic, then $C^{(S)}(G)$ as a normal subgroup of $\widehat {G}^{(S)}$ is almost generated by a single element.

UDC: 512.74

Received: January 11, 2015

Language: English

DOI: 10.1134/S0371968516010143


 English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 292, 216–246

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024