RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2002 Volume 239, Pages 215–238 (Mi tm369)

This article is cited in 8 papers

The Argument of the Riemann Zeta Function on the Critical Line

M. A. Korolev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The following assertion is proved: If $N_1(T)$ is the number of sign changes of the argument of the Riemann zeta function $\zeta (s)$ on the interval $0<\operatorname{Im}s\le T$ of the critical line$\operatorname{Re}s=1/2$, then, for any $a$ such that $27/82<a\le 1$, $T\ge T_1(a)>0$, and $H=T^a$, the inequality $N_1(T+H)-N_1(T) \ge H\log T\exp \bigl (-\frac {c\log \log T}{\sqrt {\log \log \log T}}\bigr )$ holds with a constant $c=c(a)>0$.

UDC: 511

Received in May 2001


 English version:
Proceedings of the Steklov Institute of Mathematics, 2002, 239, 202–224

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025