RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2016 Volume 292, Pages 69–99 (Mi tm3691)

This article is cited in 13 papers

On the size of the genus of a division algebra

Vladimir I. Chernousova, Andrei S. Rapinchukb, Igor A. Rapinchukc

a Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
b Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USA
c Department of Mathematics, Harvard University, Cambridge, MA, 02138 USA

Abstract: Let $D$ be a central division algebra of degree $n$ over a field $K$. One defines the genus $\mathbf {gen}(D)$ as the set of classes $[D']\in \mathrm {Br}(K)$ in the Brauer group of $K$ represented by central division algebras $D'$ of degree $n$ over $K$ having the same maximal subfields as $D$. We prove that if the field $K$ is finitely generated and $n$ is prime to its characteristic, then $\mathbf {gen}(D)$ is finite, and give explicit estimations of its size in certain situations.

UDC: 512.552

Received: September 7, 2015

Language: English

DOI: 10.1134/S0371968516010052


 English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 292, 63–93

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025