RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2016 Volume 292, Pages 264–267 (Mi tm3696)

This article is cited in 6 papers

Division algebras of prime degree with infinite genus

S. V. Tikhonov

Belarusian State University, Minsk, Belarus

Abstract: The genus $\mathbf {gen}(\mathcal D)$ of a finite-dimensional central division algebra $\mathcal D$ over a field $F$ is defined as the collection of classes $[\mathcal D']\in \mathrm {Br}(F)$, where $\mathcal D'$ is a central division $F$-algebra having the same maximal subfields as $\mathcal D$. For any prime $p$, we construct a division algebra of degree $p$ with infinite genus. Moreover, we show that there exists a field $K$ such that there are infinitely many nonisomorphic central division $K$-algebras of degree $p$ and any two such algebras have the same genus.

UDC: 512.552

Received: November 27, 2014

DOI: 10.1134/S0371968516010167


 English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 292, 256–259

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025