RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2016 Volume 292, Pages 149–158 (Mi tm3698)

Frattini and related subgroups of mapping class groups

G. Masbauma, A. W. Reidb

a Institut de Mathématiques de Jussieu–PRG (UMR 7586 du CNRS), Equipe Topologie et Géométrie Algébriques, Case 247, 4 pl. Jussieu, 75252 Paris Cedex 5, France
b Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA

Abstract: Let $\Gamma _{g,b}$ denote the orientation-preserving mapping class group of a closed orientable surface of genus $g$ with $b$ punctures. For a group $G$ let $\Phi _f(G)$ denote the intersection of all maximal subgroups of finite index in $G$. Motivated by a question of Ivanov as to whether $\Phi _f(G)$ is nilpotent when $G$ is a finitely generated subgroup of $\Gamma _{g,b}$, in this paper we compute $\Phi _f(G)$ for certain subgroups of $\Gamma _{g,b}$. In particular, we answer Ivanov's question in the affirmative for these subgroups of $\Gamma _{g,b}$.

UDC: 512.54+515.1

Received: December 9, 2014

Language: English

DOI: 10.1134/S037196851601009X


 English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 292, 143–152

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024