RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2016 Volume 293, Pages 8–42 (Mi tm3702)

This article is cited in 9 papers

Nonlinear trigonometric approximations of multivariate function classes

D. B. Bazarkhanov

Institute of Mathematics and Mathematical Modeling, ul. Pushkina 125, Almaty, 050010 Kazakhstan

Abstract: Order-sharp estimates are established for the best $N$-term approximations of functions from Nikol'skii–Besov type classes $\mathrm B^{sm}_{pq}(\mathbb T^k)$ with respect to the multiple trigonometric system $\mathfrak T^{(k)}$ in the metric of $L_r(\mathbb T^k)$ for a number of relations between the parameters $s,p,q,r$, and $m$ ($s=(s_1,\dots,s_n)\in\mathbb R^n_+$, $1\leq p,q,r\leq\infty$, $m=(m_1,\dots,m_n)\in\mathbb N^n$, $k=m_1+\dots+m_n$). Constructive methods of nonlinear trigonometric approximation –variants of the so-called greedy algorithms – are used in the proofs of upper estimates.

UDC: 517.518.8

Received: December 2, 2015

DOI: 10.1134/S0371968516020023


 English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 293, 2–36

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025