RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2016 Volume 293, Pages 296–324 (Mi tm3720)

This article is cited in 13 papers

Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces

I. V. Sadovnichaya

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119991 Russia

Abstract: The problem of equiconvergence of spectral decompositions corresponding to the systems of root functions of two one-dimensional Dirac operators $\mathcal L_{P,U}$ and $\mathcal L_{0,U}$ with potential $P$ summable on a finite interval and Birkhoff-regular boundary conditions is analyzed. It is proved that in the case of $P\in L_\varkappa[0,\pi]$, $\varkappa\in(1,\infty]$, equiconvergence holds for every function $\mathbf f\in L_\mu[0,\pi]$, $\mu\in[1,\infty]$, in the norm of the space $L_\nu[0,\pi]$, $\nu\in[1,\infty]$, if the indices $\varkappa,\mu$, and $\nu$ satisfy the inequality $1/\varkappa+1/\mu-1/\nu\le1$ (except for the case when $\varkappa=\nu=\infty$ and $\mu=1$). In particular, in the case of a square summable potential, the uniform equiconvergence on the interval $[0,\pi]$ is proved for an arbitrary function $\mathbf f\in L_2[0,\pi]$.

UDC: 517.984.52

Received: November 12, 2015

DOI: 10.1134/S0371968516020205


 English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 293, 288–316

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025