RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2016 Volume 294, Pages 216–229 (Mi tm3728)

This article is cited in 3 papers

Elliptic function of level $4$

E. Yu. Bunkova

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: The article is devoted to the theory of elliptic functions of level $n$. An elliptic function of level $n$ determines a Hirzebruch genus called an elliptic genus of level $n$. Elliptic functions of level $n$ are also of interest because they are solutions of the Hirzebruch functional equations. The elliptic function of level $2$ is the Jacobi elliptic sine function, which determines the famous Ochanine–Witten genus. It is the exponential of the universal formal group of the form $F(u,v)=(u^2-v^2)/(uB(v)-vB(u))$, $B(0)=1$. The elliptic function of level $3$ is the exponential of the universal formal group of the form $F(u,v)=(u^2A(v)-v^2 A(u))/(uA(v)^2-vA(u)^2)$, $A(0)=1$, $A''(0)=0$. In the present study we show that the elliptic function of level $4$ is the exponential of the universal formal group of the form $F(u,v)=(u^2A(v)-v^2A(u))/(uB(v)-vB(u))$, where $A(0)=B(0)=1$ and for $B'(0)=A''(0)=0$, $A'(0)=A_1$, and $B''(0)=2B_2$ the following relation holds: $(2B(u)+3A_1u)^2=4A(u)^3-(3A_1^2-8B_2)u^2A(u)^2$. To prove this result, we express the elliptic function of level $4$ in terms of the Weierstrass elliptic functions.

UDC: 512.741+515.178.2+517.965

Received: May 11, 2016

DOI: 10.1134/S0371968516030122


 English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 294, 201–214

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025