RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2016 Volume 294, Pages 191–215 (Mi tm3729)

This article is cited in 20 papers

Polynomial dynamical systems and the Korteweg–de Vries equation

V. M. Buchstaber

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: We explicitly construct polynomial vector fields $\mathcal L_k$, $k=0,1,2,3,4,6$, on the complex linear space $\mathbb C^6$ with coordinates $X=(x_2,x_3,x_4)$ and $Z=(z_4,z_5,z_6)$. The fields $\mathcal L_k$ are linearly independent outside their discriminant variety $\Delta\subset\mathbb C^6$ and are tangent to this variety. We describe a polynomial Lie algebra of the fields $\mathcal L_k$ and the structure of the polynomial ring $\mathbb C[X,Z]$ as a graded module with two generators $x_2$ and $z_4$ over this algebra. The fields $\mathcal L_1$ and $\mathcal L_3$ commute. Any polynomial $P(X,Z)\in\mathbb C[X,Z]$ determines a hyperelliptic function $P(X,Z)(u_1,u_3)$ of genus $2$, where $u_1$ and $u_3$ are the coordinates of trajectories of the fields $\mathcal L_1$ and $\mathcal L_3$. The function $2x_2(u_1,u_3)$ is a two-zone solution of the Korteweg–de Vries hierarchy, and $\partial z_4(u_1,u_3)/\partial u_1=\partial x_2(u_1,u_3)/\partial u_3$.

UDC: 515.178.2+517.958

Received: May 11, 2016

DOI: 10.1134/S0371968516030110


 English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 294, 176–200

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024