RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2016 Volume 294, Pages 230–236 (Mi tm3742)

This article is cited in 7 papers

Uniqueness theorem for locally antipodal Delaunay sets

N. P. Dolbilin, A. N. Magazinov

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: We prove theorems on locally antipodal Delaunay sets. The main result is the proof of a uniqueness theorem for locally antipodal Delaunay sets with a given $2R$-cluster. This theorem implies, in particular, a new proof of a theorem stating that a locally antipodal Delaunay set all of whose $2R$-clusters are equivalent is a regular system, i.e., a Delaunay set on which a crystallographic group acts transitively.

UDC: 514.12+519.1

Received: April 18, 2016

DOI: 10.1134/S0371968516030134


 English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 294, 215–221

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025