RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2016 Volume 295, Pages 142–162 (Mi tm3751)

This article is cited in 1 paper

A KAM theorem for space-multidimensional Hamiltonian PDEs

L. H. Eliassona, B. Grébertb, S. B. Kuksina

a Université Paris Diderot, Sorbonne Paris Cité, Institut de Mathéematiques de Jussieu–Paris Rive Gauche, UMR 7586, CNRS, Sorbonne Universités, UPMC Université Paris 06, F-75013, Paris, France
b Laboratoire de Mathématiques Jean Leray, Université de Nantes, UMR CNRS 6629, 44322 Nantes Cedex 3, France

Abstract: We present an abstract KAM theorem adapted to space-multidimensional Hamiltonian PDEs with smoothing nonlinearities. The main novelties of this theorem are the following: (i) the integrable part of the Hamiltonian may contain a hyperbolic part and, as a consequence, the constructed invariant tori may be unstable; (ii) it applies to singular perturbation problems. In this paper we state the KAM theorem and comment on it, give the main ingredients of the proof, and present three applications of the theorem.

UDC: 517.957

Received: June 14, 2016

DOI: 10.1134/S0371968516040075


 English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 295, 129–147

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025