RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2016 Volume 295, Pages 72–106 (Mi tm3752)

This article is cited in 3 papers

Arnold diffusion in a neighborhood of strong resonances

M. N. Davletshin, D. V. Treschev

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: The paper deals with nearly integrable multidimensional a priori unstable Hamiltonian systems. Assuming the Hamilton function is smooth and time-periodic, we study perturbations that are trigonometric polynomials in the “angle” variables in the first approximation. For a generic system in this class, we construct a trajectory whose projection on the space of slow variables crosses a small neighborhood of a strong resonance. We also estimate the speed of this crossing.

UDC: 517.958+531.01

Received: May 29, 2016

DOI: 10.1134/S0371968516040051


 English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 295, 63–94

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024