RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2016 Volume 295, Pages 163–173 (Mi tm3754)

This article is cited in 9 papers

Spectral stability theory of heteroclinic solutions to the Korteweg–de Vries–Burgers equation with an arbitrary potential

A. T. Il'ichev, A. P. Chugainova

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: The analysis of stability of heteroclinic solutions to the Korteweg–de Vries–Burgers equation is generalized to the case of an arbitrary potential that gives rise to heteroclinic states. An example of a specific nonconvex potential is given for which there exists a wide set of heteroclinic solutions of different types. Stability of the corresponding solutions in the context of uniqueness of a solution to the problem of decay of an arbitrary discontinuity is discussed.

UDC: 519.634

Received: June 10, 2016

DOI: 10.1134/S0371968516040087


 English version:
Proceedings of the Steklov Institute of Mathematics, 2016, 295, 148–157

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025