RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2017 Volume 296, Pages 72–94 (Mi tm3766)

This article is cited in 5 papers

On the zeros of the Davenport–Heilbronn function

S. A. Gritsenkoab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Bauman Moscow State Technical University

Abstract: Let $N_0(T)$ be the number of zeros of the Davenport–Heilbronn function in the interval $[1/2,1/2+iT]$. It is proved that $N_0(T)\gg T(\ln T)^{1/2+1/16-\varepsilon }$, where $\varepsilon $ is an arbitrarily small positive number.

UDC: 511.331

Received: May 15, 2016

DOI: 10.1134/S037196851701006X


 English version:
Proceedings of the Steklov Institute of Mathematics, 2017, 296, 65–87

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025