RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2017 Volume 296, Pages 95–110 (Mi tm3777)

This article is cited in 24 papers

A new $k$th derivative estimate for exponential sums via Vinogradov's mean value

D. R. Heath-Brown

Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford, UK

Abstract: We give a slight refinement to the process by which estimates for exponential sums are extracted from bounds for Vinogradov's mean value. Coupling this with the recent works of Wooley, and of Bourgain, Demeter and Guth, providing optimal bounds for the Vinogradov mean value, we produce a powerful new $k$th derivative estimate. Roughly speaking, this improves the van der Corput estimate for $k\ge 4$. Various corollaries are given, showing for example that $\zeta (\sigma +it)\ll _{\varepsilon }t^{(1-\sigma )^{3/2}/2+\varepsilon }$ for $t\ge 2$ and $0\le \sigma \le 1$, for any fixed $\varepsilon >0$.

UDC: 511.323

Received: January 18, 2016

DOI: 10.1134/S0371968517010071


 English version:
Proceedings of the Steklov Institute of Mathematics, 2017, 296, 88–103

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024