RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2017 Volume 296, Pages 123–132 (Mi tm3780)

This article is cited in 1 paper

A note on Linnik's approach to the Dirichlet $L$-functions

J. Kaczorowskiab, A. Perellic

a Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland
b Institute of Mathematics of the Polish Academy of Sciences, Warsaw, Poland
c Dipartimento di Matematica, Universitá di Genova, Genova, Italy

Abstract: Let $\chi \pmod q$, $q>1$, be a primitive Dirichlet character. We first present a detailed account of Linnik's deduction of the functional equation of $L(s,\chi )$ from the functional equation of $\zeta (s)$. Then we show that the opposite deduction can be obtained by a suitable modification of the method, involving finer arithmetic arguments.

UDC: 511.331

Received: May 2, 2016

DOI: 10.1134/S0371968517010095


 English version:
Proceedings of the Steklov Institute of Mathematics, 2017, 296, 115–124

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024