RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2017 Volume 297, Pages 224–231 (Mi tm3798)

This article is cited in 1 paper

On the smoothness of the conjugacy between circle maps with a break

Konstantin Khaninab, Saša Kocićc

a Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, ON, Canada M5S 2E4
b Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Bol'shoi Karetnyi per. 19, str. 1, Moscow, 127051 Russia
c Department of Mathematics, University of Mississippi, University, MS 38677-1848, USA

Abstract: For any $\alpha\in(0,1)$, $c\in\mathbb R_+\setminus\{1\}$ and $\gamma>0$ and for Lebesgue almost all irrational $\rho\in(0,1)$, any two $C^{2+\alpha}$-smooth circle diffeomorphisms with a break, with the same rotation number $\rho$ and the same size of the breaks $c$, are conjugate to each other via a $C^1$-smooth conjugacy whose derivative is uniformly continuous with modulus of continuity $\omega(x)=A|{\log x}|^{-\gamma}$ for some $A>0$.

UDC: 517.938

Received: July 25, 2016

DOI: 10.1134/S0371968517020121


 English version:
Proceedings of the Steklov Institute of Mathematics, 2017, 297, 200–207

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024