RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2017 Volume 297, Pages 38–45 (Mi tm3799)

This article is cited in 1 paper

Erdős measures on the Euclidean space and on the group of $A$-adic integers

Z. I. Bezhaevaa, V. L. Kulikovb, E. F. Olekhovab, V. I. Oseledetsbc

a National Research University "Higher School of Economics", ul. Myasnitskaya 20, Moscow, 101000 Russia
b Financial University under the Government of the Russian Federation, Leningradskii pr. 49, Moscow, 125993 Russia
c Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia

Abstract: Let $A\in M_n(\mathbb Z)$ be a matrix with eigenvalues greater than $1$ in absolute value. The $\mathbb Z^n$-valued random variables $\xi_t$, $t\in\mathbb Z$, are i.i.d., and $P(\xi_t=j)=p_j$, $j\in\mathbb Z^n$, $0<p_0<1$, $\sum_j p_j=1$. We study the properties of the distributions of the $\mathbb R^n$-valued random variable $\zeta_1=\sum_{t=1}^\infty A^{-t}\xi_t$ and of the random variable $\zeta=\sum_{t=0}^\infty A^t\xi_{-t}$ taking integer $A$-adic values. We obtain a necessary and sufficient condition for the absolute continuity of these distributions. We define an invariant Erdős measure on the compact abelian group of $A$-adic integers. We also define an $A$-invariant Erdős measure on the $n$-dimensional torus. We show the connection between these invariant measures and functions of countable stationary Markov chains. In the case when $|\{j\colon p_j\ne 0\}|<\infty$, we establish the relation between these invariant measures and finite stationary Markov chains.

UDC: 519.214.7+519.217.2

Received: December 16, 2016

DOI: 10.1134/S0371968517020029


 English version:
Proceedings of the Steklov Institute of Mathematics, 2017, 297, 28–34

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024