Abstract:
As applied to the problem of asymptotic integration of linear systems of ordinary differential equations, we propose a reduction of order method that allows one to effectively construct solutions indistinguishable in the growth/decrease rate at infinity. In the case of a third-order equation, we use the developed approach to answer Bellman's problem on splitting WKB asymptotics of subdominant solutions that decrease at the same rate. For a family of Wigner–von Neumann type potentials, the method allows one to formulate a selection rule for nonresonance values of the parameters (for which the corresponding second-order equation has a Jost solution).