RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2017 Volume 298, Pages 127–138 (Mi tm3815)

This article is cited in 1 paper

Compactification of the Space of Branched Coverings of the Two-Dimensional Sphere

V. I. Zvonilova, S. Yu. Orevkovbcd

a Chukotka Branch of the North-Eastern Federal University, Studencheskaya ul. 3, Anadyr, Chukotka, 689000 Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
c Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
d National Research University "Higher School of Economics," ul. Myasnitskaya 20, Moscow, 101000 Russia

Abstract: For a closed oriented surface $\Sigma $ we define its degenerations into singular surfaces that are locally homeomorphic to wedges of disks. Let $X_{\Sigma ,n}$ be the set of isomorphism classes of orientation-preserving $n$-fold branched coverings $\Sigma \to S^2$ of the two-dimensional sphere. We complete $X_{\Sigma ,n}$ with the isomorphism classes of mappings that cover the sphere by the degenerations of $\Sigma $. In the case $\Sigma =S^2$, the topology that we define on the obtained completion $\overline {X}_{\!\Sigma ,n}$ coincides on $X_{S^2,n}$ with the topology induced by the space of coefficients of rational functions $P/Q$, where $P$ and $Q$ are homogeneous polynomials of degree $n$ on $\mathbb C\mathrm P^1\cong S^2$. We prove that $\overline {X}_{\!\Sigma ,n}$ coincides with the Diaz–Edidin–Natanzon–Turaev compactification of the Hurwitz space $H(\Sigma ,n)\subset X_{\Sigma ,n}$ consisting of isomorphism classes of branched coverings with all critical values being simple.

UDC: 515.179.25

Received: November 1, 2016

DOI: 10.1134/S0371968517030098


 English version:
Proceedings of the Steklov Institute of Mathematics, 2017, 298, 118–128

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025