RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2017 Volume 299, Pages 105–117 (Mi tm3823)

This article is cited in 9 papers

Solution of functional equations related to elliptic functions

A. A. Illarionov

Khabarovsk Division of the Institute of Applied Mathematics, Far Eastern Branch of the Russian Academy of Sciences, ul. Dzerzhinskogo 54, Khabarovsk, 680000 Russia

Abstract: Functional equations of the form $f(x+y) g(x-y) = \sum _{j=1}^n \alpha _j(x)\beta _j(y)$ as well as of the form $f_1(x+z) f_2(y+z) f_3(x+y-z) = \sum _{j=1}^{m} \phi _j(x,y) \psi _j(z)$ are solved for unknown entire functions $f,g,\alpha _j,\beta _j: \mathbb{C} \to \mathbb{C} $ and $f_1,f_2,f_3,\psi _j: \mathbb{C} \to \mathbb{C} $, $\phi _j: \mathbb{C} ^2\to \mathbb{C} $ in the cases of $n=3$ and $m=4$.

UDC: 517.965+517.583

Received: October 24, 2016

DOI: 10.1134/S0371968517040069


 English version:
Proceedings of the Steklov Institute of Mathematics, 2017, 299, 96–108

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025