RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2017 Volume 297, Pages 113–132 (Mi tm3841)

This article is cited in 6 papers

Topological and ergodic aspects of partially hyperbolic diffeomorphisms and nonhyperbolic step skew products

L. J. Díaza, K. Gelfertb, M. Ramsc

a Departamento de Matemá'tica PUC-Rio, Marquês de São Vicente 225, Gávea, Rio de Janeiro 22451-900, Brazil
b Instituto de Matemática Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Cidade Universitária — Ilha do Fundão, Rio de Janeiro 21945-909, Brazil
c Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warszawa, Poland

Abstract: We review some ergodic and topological aspects of robustly transitive partially hyperbolic diffeomorphisms with one-dimensional center direction. We also discuss step skew-product maps whose fiber maps are defined on the circle which model such dynamics. These dynamics are genuinely nonhyperbolic and exhibit simultaneously ergodic measures with positive, negative, and zero exponents as well as intermingled horseshoes having different types of hyperbolicity. We discuss some recent advances concerning the topology of the space of invariant measures and properties of the spectrum of Lyapunov exponents.

UDC: 517.938

MSC: 37D25, 37D35, 37D30, 28D20, 28D99

Received: March 15, 2017

DOI: 10.1134/S0371968517020066


 English version:
Proceedings of the Steklov Institute of Mathematics, 2017, 297, 98–115

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025