RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2017 Volume 299, Pages 62–85 (Mi tm3844)

This article is cited in 2 papers

Symmetry and short interval mean-squares

Giovanni Coppolaab, Maurizio Laportab

a University of Salerno, Via Giovanni Paolo II, 132 - 84084, Fisciano (SA), Italy
b Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli Federico II, Complesso di Monte S. Angelo, Via Cintia, 80126 Napoli, Italy

Abstract: The weighted Selberg integral is a discrete mean-square that generalizes the classical Selberg integral of primes to an arithmetic function $f$, whose values in a short interval are suitably attached to a weight function. We give conditions on $f$ and select a particular class of weights in order to investigate non-trivial bounds of weighted Selberg integrals of both $f$ and $f*\mu $. In particular, we discuss the cases of the symmetry integral and the modified Selberg integral, the latter involving the Cesaro weight. We also prove some side results when $f$ is a divisor function.

Keywords: mean square, short interval, symmetry, correlation.

UDC: 511.35

MSC: 11N37, 11A25

Received: February 14, 2017

DOI: 10.1134/S0371968517040045


 English version:
Proceedings of the Steklov Institute of Mathematics, 2017, 299, 56–77

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024