RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2017 Volume 299, Pages 144–154 (Mi tm3847)

This article is cited in 5 papers

On a Diophantine inequality with reciprocals

M. A. Korolev

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: A sharpened lower bound is obtained for the number of solutions to an inequality of the form $\alpha \le \{(a\overline {n}+bn)/q\}<\beta $, $1\le n\le N$, where $q$ is a sufficiently large prime number, $a$ and $b$ are integers with $(ab,q)=1$, $n\overline {n}\equiv 1 \pmod q$, and $0\le \alpha <\beta \le 1$. The length $N$ of the range of the variable $n$ is of order $q^\varepsilon $, where $\varepsilon >0$ is an arbitrarily small fixed number.

Keywords: inverse residues, fractional parts, Kloosterman sums.

UDC: 511.321

Received: April 10, 2017

DOI: 10.1134/S0371968517040094


 English version:
Proceedings of the Steklov Institute of Mathematics, 2017, 299, 132–142

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025