RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2017 Volume 299, Pages 234–260 (Mi tm3848)

This article is cited in 1 paper

Sums of values of nonprincipal characters over a sequence of shifted primes

Z. Kh. Rakhmonov

A. Juraev Institute of Mathematics, Academy of Sciences of the Republic of Tajikistan, Aini st. 299/1, Dushanbe, 734063 Tajikistan

Abstract: For a nonprincipal character $\chi $ modulo $D$, we prove a nontrivial estimate of the form $\sum _{n\le x}\Lambda (n)\chi (n-l)\ll x\exp \{-0.6\sqrt {\ln D}\}$ for the sum of values of $\chi $ over a sequence of shifted primes in the case when $x\ge D^{1/2+\varepsilon }$, $(l,D)=1$, and the modulus of the primitive character generated by $\chi $ is a cube-free number.

Keywords: Dirichlet character, shifted primes, short character sum, exponential sum over primes.

UDC: 511.325

Received: March 31, 2017

DOI: 10.1134/S037196851704015X


 English version:
Proceedings of the Steklov Institute of Mathematics, 2017, 299, 219–245

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025