RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2018 Volume 301, Pages 259–275 (Mi tm3908)

This article is cited in 14 papers

On a new approach to the problem of distribution of zeros of Hermite–Padé polynomials for a Nikishin system

S. P. Suetin

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: A new approach to the problem of the zero distribution of type I Hermite–Padé polynomials for a pair of functions $f_1,f_2$ forming a Nikishin system is discussed. Unlike the traditional vector approach, we give an answer in terms of a scalar equilibrium problem with harmonic external field which is posed on a two-sheeted Riemann surface.

Keywords: Hermite–Padé polynomials, non-Hermitian orthogonal polynomials, distribution of zeros.

UDC: 517.53

Received: November 24, 2017

DOI: 10.1134/S037196851802019X


 English version:
Proceedings of the Steklov Institute of Mathematics, 2018, 301, 245–261

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025