RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2018 Volume 301, Pages 182–191 (Mi tm3912)

On expanding neighborhoods of local universality of Gaussian unitary ensembles

M. A. Lapik, D. N. Tulyakov

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 Russia

Abstract: The classical universality theorem states that the Christoffel–Darboux kernel of the Hermite polynomials scaled by a factor of $1/\sqrt n$ tends to the sine kernel in local variables $\widetilde x,\widetilde y$ in a neighborhood of a point $x^*\in(-\sqrt2,\sqrt2)$. This classical result is well known for $\widetilde x,\widetilde y\in K\Subset\mathbb R$. In this paper, we show that this classical result remains valid for expanding compact sets $K=K(n)$. An interesting phenomenon of admissible dependence of the expansion rate of compact sets $K(n)$ on $x^*$ is established. For $x^*\in(-\sqrt2,\sqrt2)\setminus\{0\}$ and for $x^*=0$, there are different growth regimes of compact sets $K(n)$. A transient regime is found.

UDC: 517.53

Received: December 4, 2017

DOI: 10.1134/S0371968518020139


 English version:
Proceedings of the Steklov Institute of Mathematics, 2018, 301, 170–179

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025