RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2018 Volume 301, Pages 155–181 (Mi tm3913)

This article is cited in 8 papers

Some problems in the theory of ridge functions

S. V. Konyagina, A. A. Kuleshovb, V. E. Maiorovc

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Laboratory "Multidimensional Approximation and Applications", Lomonosov Moscow State University, Moscow, 119991 Russia
c Technion – Israel Institute of Technology, Haifa 32000 Israel

Abstract: Let $d\ge2$ and $E\subset\mathbb R^d$ be a set. A ridge function on $E$ is a function of the form $\varphi(\mathbf a\cdot\mathbf x)$, where $\mathbf x=(x_1,\dots,x_d)\in E$, $\mathbf a=(a_1,\dots,a_d)\in\mathbb R^d\setminus\{\mathbf0\}$, $\mathbf a\cdot\mathbf x=\sum_{j=1}^da_jx_j$, and $\varphi$ is a real-valued function. Ridge functions play an important role both in approximation theory and mathematical physics and in the solution of applied problems. The present paper is of survey character. It addresses the problems of representation and approximation of multidimensional functions by finite sums of ridge functions. Analogs and generalizations of ridge functions are also considered.

UDC: 517.518.2

Received: December 27, 2017

DOI: 10.1134/S0371968518020127


 English version:
Proceedings of the Steklov Institute of Mathematics, 2018, 301, 144–169

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025