RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2018 Volume 301, Pages 241–258 (Mi tm3915)

This article is cited in 4 papers

Hermite–Padé approximants of the Mittag-Leffler functions

A. P. Starovoitov

Francisk Skorina Gomel State University, Savetskaya vul. 104, Gomel, 246019 Belarus

Abstract: The convergence rate of type II Hermite–Padé approximants for a system of degenerate hypergeometric functions $\{_1F_1(1,\gamma;\lambda_jz)\}_{j=1}^k$ is found in the case when the numbers $\{\lambda_j\}_{j=1}^k$ are the roots of the equation $\lambda^k=1$ or real numbers and $\gamma\in\mathbb C\setminus\{0,-1,-2,\dots\}$. More general statements are obtained for approximants of this type (including nondiagonal ones) in the case of $k=2$. The theorems proved in the paper complement and generalize the results obtained earlier by other authors.

Keywords: Hermite–Padé polynomials, Hermite–Padé approximants, asymptotic equalities, Laplace method, saddle-point method.

UDC: 517.538.5+517.518.84

Received: January 5, 2018

DOI: 10.1134/S0371968518020188


 English version:
Proceedings of the Steklov Institute of Mathematics, 2018, 301, 228–244

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025