RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2018 Volume 301, Pages 287–319 (Mi tm3918)

This article is cited in 20 papers

Potentials on a compact Riemann surface

E. M. Chirka

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: Fundamental concepts of potential theory on compact Riemann surfaces are defined that generalize the corresponding concepts of logarithmic potential theory on the complex plane. The standard properties of these quantities are proved, and relationships between them are established.

UDC: 517.53+515.17

Received: December 29, 2017

DOI: 10.1134/S0371968518020218


 English version:
Proceedings of the Steklov Institute of Mathematics, 2018, 301, 272–303

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025