RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2018 Volume 302, Pages 287–295 (Mi tm3922)

This article is cited in 7 papers

Calabi–Yau hypersurfaces and SU-bordism

Ivan Yu. Limonchenkoa, Zhi Lüa, Taras E. Panovbcd

a School of Mathematical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China
b Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute", Bol'shaya Cheremushkinskaya ul. 25, Moscow, 117218 Russia
c Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia
d Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Bol'shoi Karetnyi per. 19, str. 1, Moscow, 127051 Russia

Abstract: V. V. Batyrev constructed a family of Calabi–Yau hypersurfaces dual to the first Chern class in toric Fano varieties. Using this construction, we introduce a family of Calabi–Yau manifolds whose $\mathrm {SU}$-bordism classes generate the special unitary bordism ring $\varOmega ^{\mathrm {SU}}\bigl [\tfrac 12\bigr ]\cong \mathbb {Z}\bigl [\tfrac 12\bigr ][y_i\colon i\ge 2]$. We also describe explicit Calabi–Yau representatives for multiplicative generators of the $\mathrm {SU}$-bordism ring in low dimensions.

Keywords: special unitary bordism, SU-manifold, Calabi–Yau manifold, Chern number, toric Fano variety, reflexive polytope.

UDC: 515.14+515.16

MSC: Primary 57R77, Secondary 14M25

Received: March 15, 2018

DOI: 10.1134/S0371968518030135


 English version:
Proceedings of the Steklov Institute of Mathematics, 2018, 302, 270–278

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025