RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2018 Volume 302, Pages 7–22 (Mi tm3924)

This article is cited in 9 papers

Real soliton lattices of the Kadomtsev–Petviashvili II equation and desingularization of spectral curves: the $\mathrm {Gr^{ \scriptscriptstyle TP}}(2,4)$ case

Simonetta Abendaa, Petr G. Grinevichbc

a Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna (BO), Italy
b L.D. Landau Institute for Theoretical Physics of Russian Academy of Sciences, pr. Ak. Semenova 1a, Chernogolovka, Moscow oblast, 142432 Russia
c Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia

Abstract: We apply the general construction developed in our previous papers to the first nontrivial case of $\mathrm {Gr^{ \scriptscriptstyle TP}}(2,4)$. In particular, we construct finite-gap real quasi-periodic solutions of the KP-II equation in the form of a soliton lattice corresponding to a smooth $\mathtt M$-curve of genus $4$ which is a desingularization of a reducible rational $\mathtt M$-curve for soliton data in $\mathrm {Gr^{ \scriptscriptstyle TP}}(2,4)$.

UDC: 517.958

Received: April 23, 2018

DOI: 10.1134/S0371968518030019


 English version:
Proceedings of the Steklov Institute of Mathematics, 2018, 302, 1–15

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025