RUS  ENG
Full version
JOURNALS // Trudy Matematicheskogo Instituta imeni V.A. Steklova // Archive

Trudy Mat. Inst. Steklova, 2018 Volume 303, Pages 239–245 (Mi tm3944)

This article is cited in 7 papers

Extremal properties of product sets

K. Ford

Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, IL 61801, USA

Abstract: We find the nearly optimal size of a set $A\subset [N] := \{1,\dots ,N\}$ so that the product set $AA$ satisfies either (i) $|AA| \sim |A|^2/2$ or (ii) $|AA| \sim |[N][N]|$. This settles problems recently posed in a paper of J. Cilleruelo, D. S. Ramana and O. Ramaré.

UDC: 511.75

Received: January 27, 2018

DOI: 10.1134/S0371968518040179


 English version:
Proceedings of the Steklov Institute of Mathematics, 2018, 303, 220–226

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025